2,273 research outputs found

    Analytic description of the image to patient torso registration problem in image guided interventions

    Get PDF
    Objective: The accurate registration of virtual pre-operative information of the human body anatomy, obtained as images with imaging devices, with real intra-operative information is one of the key aspects on which effective Image Guided Surgery (IGS) is based. The registration of pre-operative images on the real patient, during abdominal and thoracic interventions, is influenced by many parameters, which in many cases are influenced each other, thus making it often difficult to define the problem and consequently to solve it for each specific kind of intervention. The objective of this paper is to obtain an analytic description of the 3D image to patient registration problem, which can be more intuitive than the traditional textual descriptions. Methods: The problem is formalized and various parameters affecting the registration are macro-classified in function of their nature. Results: The problem is analytically described discussing for each macro-category of parameters potential solutions to avoid or to reduce their contribution to the registration error. Conclusions: The availability of an analytic description of the image to patient torso registration problem can be beneficial for teaching IGS, to describe existing registration strategies, and to search new ones for each kind of surgery using a systematic approach

    Particle compositions with a pre-selected cell internalization mode

    Get PDF
    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode

    The transport of nanoparticles in blood vessels: the effect of vessel permeability and blood rheology

    Get PDF
    The longitudinal transport of nanoparticles in blood vessels has been analyzed with blood described as a Casson fluid. Starting from the celebrated Taylor and Aris theory, an explicit expression has been derived for the effective longitudinal diffusion (Deff) depending non-linearly on the rheological parameter xi(c), the ratio between the plug and the vessel radii; and on the permeability parameters pi and omega, related to the hydraulic conductivity and pressure drop across the vessel wall, respectively. An increase of xi(c) or pi has the effect of reducing Deff, and thus both the rheology of blood and the permeability of the vessels may constitute a physiological barrier to the intravascular delivery of nanoparticles

    Method for Impeding Degradation of Porous Silicon Structures

    Get PDF
    This invention relates to surface modification of porosified silicon (pSi) structures with poly(alkylene) glycols for the purpose of controlled degradation of the silicon matrix and tailored release of encapsulated substances for biomedical applications. The pSi structures are currently used in diverse biomedical applications including bio-molecular screening, optical bio-sensoring, and drug delivery by means of injectable/orally administered carriers and implantable devices. The size of the pores and the surface chemistry of the pSi structure can be controlled during the microfabrication process and thereafter. A fine regulation of the degradation kinetics of mesoporous silicon structures is of fundamental importance. Polyethylene glycols (PEGs) represent the major category of surface modifying agents used in classical drug delivery systems and in pharmaceutical dosage forms. PEGylation enables avoidance of RES uptake, thus prolonging circulation time of intravenously injectable nanovectors. PEG molecules demonstrate little toxicity and immunogenicity, and are cleared from the body through the urine (molecular weight, MW less than 30 kDa) or in the feces (MW greater than 30kDa). The invention focuses on the possibility of finely tuning the degradation kinetics of the pSi nanovectors and other structures through surface conjugation of PEGs with various backbone lengths/MWs. To prove the concept, pSi nanovectors were covalently conjugated to seven PEGs with MW from 245 to 5,000 Da and their degradation kinetics in physiologically relevant media (phosphate buffer saline, PBS pH7.4, and fetal bovine serum) was assessed by the elemental analysis of the Si using inductive coupled plasma atomic emission spectroscopy (ICP-AES). The conjugation of the PEG with lowest MW to the nanovectors surface did not induce any change in the degradation kinetics in serum, but inhibited degradation and consequently the release of orthosilicic acid into buffer. When PEGs with the longer chains were evaluated, Si mass loss from the nanovectors was slowed down, and the PEGylated structures were almost fully degraded within 18 24 hours in serum and within 48 hours in PBS. The most dramatic effect was observed for high MW PEGs 3,400 and 5,000 Da, which prominently inhibited the degradation of the systems, with complete degradation achieved only after four days. For these PEGs, during the early stages of the degradation, there was a lag period of little or no Si mass loss from the nanovector. The obtained profiles were in agreement with the erosion of the nanovector surface as observed by scanning electron microscopy

    Augmented reality in open surgery

    Get PDF
    Augmented reality (AR) has been successfully providing surgeons an extensive visual information of surgical anatomy to assist them throughout the procedure. AR allows surgeons to view surgical field through the superimposed 3D virtual model of anatomical details. However, open surgery presents new challenges. This study provides a comprehensive overview of the available literature regarding the use of AR in open surgery, both in clinical and simulated settings. In this way, we aim to analyze the current trends and solutions to help developers and end/users discuss and understand benefits and shortcomings of these systems in open surgery. We performed a PubMed search of the available literature updated to January 2018 using the terms (1) “augmented reality” AND “open surgery”, (2) “augmented reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”, (3) “mixed reality” AND “open surgery”, (4) “mixed reality” AND “surgery” NOT “laparoscopic” NOT “laparoscope” NOT “robotic”. The aspects evaluated were the following: real data source, virtual data source, visualization processing modality, tracking modality, registration technique, and AR display type. The initial search yielded 502 studies. After removing the duplicates and by reading abstracts, a total of 13 relevant studies were chosen. In 1 out of 13 studies, in vitro experiments were performed, while the rest of the studies were carried out in a clinical setting including pancreatic, hepatobiliary, and urogenital surgeries. AR system in open surgery appears as a versatile and reliable tool in the operating room. However, some technological limitations need to be addressed before implementing it into the routine practice

    Assigning UPDRS Scores in the Leg Agility Task of Parkinsonians: Can It Be Done through BSN-based Kinematic Variables?

    Full text link
    In this paper, by characterizing the Leg Agility (LA) task, which contributes to the evaluation of the degree of severity of the Parkinson's Disease (PD), through kinematic variables (including the angular amplitude and speed of thighs' motion), we investigate the link between these variables and Unified Parkinson's Disease Rating Scale (UPDRS) scores. Our investigation relies on the use of a few body-worn wireless inertial nodes and represents a first step in the design of a portable system, amenable to be integrated in Internet of Things (IoT) scenarios, for automatic detection of the degree of severity (in terms of UPDRS score) of PD. The experimental investigation is carried out considering 24 PD patients.Comment: 10 page

    Quality Control Method for a Micro-Nano-Channel Microfabricated Device

    Get PDF
    A variety of silicon-fabricated devices is used in medical applications such as drug and cell delivery, and DNA and protein separation and analysis. When a fluidic device inlet is connected to a compressed gas reservoir, and the outlet is at a lower pressure, a gas flow occurs through the membrane toward the outside. The method relies on the measurement of the gas pressure over the elapsed time inside the upstream and downstream environments. By knowing the volume of the upstream reservoir, the gas flow rate through the membrane over the pressure drop can be calculated. This quality control method consists of measuring the gas flow through a device and comparing the results with a standard curve, which can be obtained by testing standard devices. Standard devices can be selected through a variety of techniques, both destructive and nondestructive, such as SEM, AFM, and standard particle filtration

    Multistage Delivery of Active Agents

    Get PDF
    Multistage delivery vehicles are disclosed which include a first stage particle and a second stage particle. The first stage particle is a micro or nanoparticle that contains the second stage particle. The second stage particle includes an active agent, such as a therapeutic agent or an imaging agent. The multistage delivery vehicle allows sequential overcoming or bypassing of biological barriers. The multistage delivery vehicle is administered as a part of a composition that includes a plurality of the vehicles. Methods of making the multistage delivery vehicles are also provided
    corecore